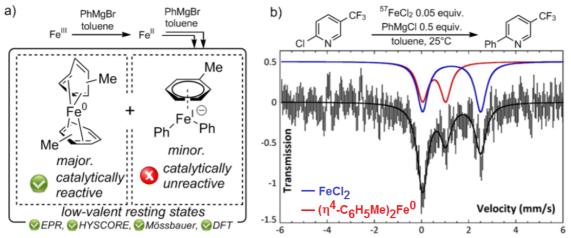


de Catalyse de Paris Saclay 5-6 avril 2018

3^{èmes} Journées


Auditorium IMAGIF, Centre de Recherches de Gif-sur-Yvette

Iron-catalyzed C—C cross-coupling : active species and offcycle pathways

G. Lefèvre, ^a L. Rousseau, ^a P. Dorlet, ^b Ch. Herrero, ^c M. Clémancey, ^d J.-M. Latour, ^d G. Blondin^d

^a CEA Saclay, DRF-IRAMIS-NIMBE-LCMCE, 91191 Gif-sur-Yvette, France ; ^b CEA Saclay, DRF, I2BC, 91191 Gif-sur-Yvette, France ; ^c ICMMO, Univ. Paris-Sud Orsay, 91400 Orsay, France ^d CEA Grenoble, BIG-LCBM-PMB, 38054 Grenoble, France guillaume.lefevre@cea.fr

Iron-catalyzed cross-coupling between a Grignard reagent RMgX and an electrophile R'–X was discovered by Kochi in the 1970s and witnessed recent improvements.¹ This transformation can be carried out using simple iron salts such as FeCl₂, FeCl₃ or Fe(acac)₃ in the absence of additional ligand. However, these systems lead to short-lived reactive species, making *in-situ* mechanistic analysis challenging. By means of Mössbauer, cw-and pulse-EPR spectroscopies, we demonstrated that two arene-stabilized Fe⁰ and Fe¹ resting states were obtained by reduction of the precursor in toluene (Fig. 1a). Analysis of the bulk revealed that the (η^4 -C₆H₅Me)₂Fe⁰ complex catalyzes efficiently aryl-heteroaryl coupling, via a Fe⁰/Fe^{II} cycle (Fig. 1b).² Preliminary results moreover show that transient tris(aryl) species such as [Ph₃Fe^{II}]⁻ are key intermediates in the formation of the lower oxidation states. Fe⁰ and Fe^I are respectively afforded by 2-electron reductive elimination and by redox disproportionation of the +II ox. state.

Figure 1. a) reduction of iron precursors ($FeCl_{2/3}$, $Fe(acac)_3$) by PhMgBr in toluene; b) iron distribution during a Ar-HetAr C—C cross-coupling (⁵⁷Fe-Mössbauer, 80 K).

a) R. S. Smith, J. K. Kochi, J. Org. Chem., 1976, 41, 502; b) I. Bauer, H.-J. Knölker, Chem. Rev., 2015, 115, 3170; 2) M. Clémancey, T. Cantat, G. Blondin, J.-M. Latour, P. Dorlet, G. Lefèvre, Inorg. Chem., 2017, 56, 3834.

